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Ground State of a Spin-Phonon System. 
II. Adiabatic Limit 

Eugene P. Gross I 
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The phase transition for a spin in a magnetic field B coupled to acoustic 
phonons by a coupling constant ~ is studied. The case B>> 1 with an upper 
cutoff of unity for the phonons is studied systematically by using an adiabatic 
canonical transformation. In leading order the transition line is at 7 = 2~/B = 1. 
In the normal phase (7 < 1) the ground-state energy is - B / 2  plus a function of 7 
that is given explicitly as the solution of a pair theory. In the broken symmetry 
phase (7> 1) the energy is the classical energy plus the same function of 

= 1/y 2. It is found that the first derivatives of the energy with respect to ~ and 
with respect to B have finite jumps across the transition line. Quantum fluc- 
tuations in both phases are treated. Higher-order terms are a series of powers of 
lIB times functions of 7. The case of a small transverse field B is also studied. 
The sharp transition disappears and is replaced by rapid variation in a region of 
order (91/9) 2/3 about 7 = 1. 
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1. I N T R O D U C T I O N  

I continue (1) the study of the phase transition in the ground-state energy 
EG(cr B) for the Hamiltonian 

H =  - 2  az - -~-  a x - ~  dkax 

1 
+ ~ J  ]k[ [p(k)p(-k) +q(k) q ( - k ) ]  dk (1) 

I have included a transverse field B1 which leads to states that are not 
eigenfunctions of parity. When B~ ~ 1 one can get insight into the develop- 
ment of the broken symmetry. 
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Here I am interested in developing a systematic theory for the case 
B~>I. 

The frequency associated with a spin flip is larger than all phonon 
frequencies, since the upper cutoff in D(k) is unity. Direct emission of a 
single phonon is forbidden by energy conservation. The transition line lies 
near c~ = B/2, which is the value given by the classical theory. The energy in 
the classical theory is given by (B 1 = 0) 

B 2 B 
EG = 2 8c~ ~ > 

B B 

2 e < 2  

(2) 

The first derivatives are (~EG/0~)B=0, (OEc/OB)~=-1/2 and are con- 
tinuous across the transition line. The second derivatives exhibit jumps 
(a2E~/~B2)~=-I/2B and (~?2EG/02~)B=--2/B. However, the classical 
theory neglects quantum fluctuations and is trivial in the normal phase. 

I will develop a systematic theory for B,> 1 based on a canonical 
transform that corresponds to the adiabatic approximation. The non- 
adiabatic terms can be explicitly calculated. However, the canonical trans- 
form must be adapted to account for the broken symmetry phase that is a 
consequence of the infinite number of phonon degrees of freedom together 
with the large number of long-wave acoustic phonons. The nonclassical 
energy is a series in 1/B of the form Lo(~/B) + (l/B) LI(c~/B ) + .... In both 
normal and broken symmetry phases we take account of quantum 
fluctuations. The transition line still lies near e ,,~ B/2 but the nature of the 
phase transition is altered. There is now a small jump in the first 
derivatives of the energy across the line. 

I introduce the broken symmetry with 

Uc = exp ( i f ph dk ) ,  U~q(k) V c  1 = q + h(k) 

Next introduce the spin rotation with 

(3) 

(4) 

WA = e i~y~ tan OA = f Y(k) q(k) dk (5) 

In contrast to the rotation in the classical theory, here tan 0 A is linear in 
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the phonon coordinates. As a consequence, there are "recoil" terms. The 
transform is completed with 

1 O'y 
W A p(k) W A  1 = p(k) - ~ Y(k) 

[1 +~ Y(k) q(k)dk] 2 

WA ax WA 1 = ax COS 0 A -- a: sin 0 A 

W A  O. z W A  1 = (T z COS 0 A + f i x  sin OA 

(6) 

2. N O R M A L  P H A S E  

Let us concentrate first on the normal phase, where h(k)=0.  The 
simplest choice is (for B 1 = 0) 

O l 
Y(k) = (7) ,//8 

The transformed Hamiltonian is 

WAHW~I=H~ -:\-~] Yh 

where 

T 2 =  1 +~-B- ~ dk 

Op k 1/2 dk, T-2 t 
+ 

(8) 

(9) 

This is of course exactly equivalent to the original Hamiltonian. The last 
term, representing a spin flip, contributes in perturbation theory an 
amount o:/B 3. It can be ignored if we calculate to order 1lB. The third term 
is (ot/B)(1/6B) accurate to lIB. 

The ground state in the transformed system is (0 ~) ~b, where ~b is the 
lowest eigenfunction of 

B ~ ( lo )  J/f = H o --~- T +  6B---- 7 

Expanding the square root, we obtain 

B o~ c( / r D q  \2 
) 

"~- (4~B)  2 1 dk)  4 _~(f Dq (11) 

822/54/1-2-28 
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The quartic term is of order 1/B. In the normal phase the Hamiltonian is 
(as B ~  ~ )  

- - ~ + H o  7 Dq \ :  2a (12) 

The eigenvalues are functions of 7- There is no lower bound for 7 > 1 since 
the equation determining the eigenvalues O gives as the condition for a 
bound state 

;o -1012 (13) 
k 2 dk 

1 = 7  k2+ ioi 2, 02 = 

which has a solution when 7>  1. This represents a runaway mode. 
However, the energy is finite when 7 < 1 and as 7 ~ 1. The ground-state 
energy of this pair theory is given by (2) 

B 
E =  - - ~  + E2 (14) 

E2 = ~ dk ~(k) 

tan 6(k) = ~2 u_ kDZ__(k) 
2 p 

2 D2(kl) k~ dkl 
p =  l - 7 ' f  

(15) 

For our case of a sharp cutoff D(k)= 0(1 - k )  

k l + k  (16) p(k) = 1 - 7 2 + 7 2 ~ In 1 _---~- ~ 

At 7 = 1 the energy has the finite value 

E2(7= 1)=  - ~  re2 + y2 tanh (17) 

The expression for E 2 is complicated in the rest of the region 7 < 1. 
However, for 7"~ 1 we obtain the perturbation result 

7 
E2 --* 8 - 4B (18) 

(valid, of course, for B > 1 ). 
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It is not hard to find the ground-state energy to order 1/B. One needs 
the pair ground-state wave function gtp(q(k) 17). The extra contributions 
a r e  

~' (19) z~E:.i.~+lltl p (fOqdkt 4 %1 '21 
~/k  / (8rc) ~ B 

o r  

AE=~-~+-B-~n • (kl) m q(k)q(l)dkdl (20) 

The contraction 

q(k)q(1)= (Tp Iq(k)q(l)[ Tp) 

is a known function of 7, but we are not interested in the value here. Note 
that the first derivative dE2/dy is finite as 7 ~ 1. 

3. BROKEN S Y M M E T R Y  PHASE (B 1 = 0 )  

The corresponding expansion in the broken symmetry phase starts 
from 

H = H o +  hkqdk+-~ khZdk - I + ~ B  ~ (h+q)dk (21) 

Let 

a = 1 + ~ f f /  dk (22) 

and expand the square root. The condition, to order 1/B, that the linear 
term in q(k) vanishes is 

h(k)=l (o~)~/2 D B (23) ~-s sin 0, cos 0 = 2-~ 

This is the same result as in the classical theory. One also finds that 
a = (B/2c02=~ -2. However, one now can compute quantum fluctuation 
effects in the broken symmetry phase. Neglecting the quartic term (,,~ l/B), 
one has the Hamiltonian 

0, o- (fDq ,4, 
~ -  2 87r ~ / + y~ (24) 
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a replaces y in the energy E2. Far above the transition line there is the fluc- 
tuation contribution - a / 8 .  The energies of normal and broken symmetry 
phases match at 7 = cr = 1, and the lIB contributions are the same. 

While the energy is continuous, the first derivatives are not. In the 
normal phase 

( ~3E2"] = 2 dEe { ~E2) 7 dE2 (25) 
~a ,) B B dT ' \-~-B J = -  B d7 

In the broken symmetry phase 

( E2) _- 4 l dE2 
~c~ J B B ~3 da ' 

(ae ) 2 , (dE2)  
--~ff j =-~ 7--7 \ da j 

(26) 

At the transition line ~, = ~r = 1 and dE2/d7 = dE2/dff. So the first derivatives 
jump by an amount of order 1/B. 

4. W E A K  T R A N S V E R S E  F IELD 

I now add a t e r m - ( B 1 / 2 ) a x  to the Hamiltonian. This term does not 
commute with the parity operator. When the coupling constant is zero the 
ground-state energy is -[(B/2)2+(Bx/2)2] m. When B = 0  the ground- 
state energy is no longer degenerate. It is - B 1 / 2 - e / 2  with a state vector 
(I) ~bo. We are interested here in the limit B>> 1 with B1 '~ 1. There is no 
longer any phase transition as a function of ~. Instead there is a rapid 
transition from normal to ordered phase in the vicinity of e = B/2. The 
width of the transition region is of order (B1/B) 2/3. 

The results follow immediately when we use the angle 

B 1 1 ( % )  1/2 D 
tan 0 A = - f f + ~  f - - ~ [ h + q ] d k  (27) 

To calculate to order l/B, we can again neglect the recoil terms, expand the 
leading square root term, and choose h(k) to make the linear term in q(k) 
vanish. This gives a Hamiltonian 

~uf=~ o 8nB(l +u2)3/2 dk + H o (28) 

B c~ u 2 
3o= - 2  (1 +u2) ~ / 2 + - ~  (29) 2 1 + u  2 

The quantity u obeys the equation 
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One finds for the dispaced phonon field h(k) 

D u 
h(k) = (o~7"c) 1/2 k3/2 (1 +//2)1/2 (31) 

Let us first analyze the equation for u. Note that at ?, = 1 the solution 
is u * =  (2B1/B) ~/3, neglecting higher-order terms in (BI/B). The coefficient 
of the pair term is - ( y / S r c h ) [ 1 -  (3/2)(2B1/B)2/3]. The energy Go becomes 

2 16 (32) 

In the weak coupling region 7 < 1 we have 

B1 1 
u -~ - -  - -  (33) 

B I - ~  

provided we are outside of a Bi-dependent  region near c~ = B/2. Then 

G ~  1 + 5  (34) 

To get the total ground-state energy, we must add the contribution from 
the pair term. In ~ ~ 1 this is 

I1-3(B1) 2 ] /35/ 
8 2 \ 8 / j  

We recover the perturbation result. 
In the ordered or "broken symmetry" phase c~/2B > 1 

1 B 1 (36 )  
u--* (~, 2 -  1) ' / 2 -  1 q 1 - (B /2c02  B 

~ B2 BI [ ( B ) 2] 1/2 
~o ~ 1 - ( 3 7 )  

2 87 2 

When c~>B/2 the pair term gives the quantum fluctuation term 
- 1/32 B2/c~ 2. 

In the limit c~--, oo we obtain the simple G0 = - ~ / 2 -  B1/2 with the 
ground-state wave function (~) ~o. 
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5. CONCLUSIONS 

The adiabatic canonical transformation prepares the Hamiltonian by 
referring the spin variable to the instantaneous phonon coordinates. It is in 
the spirit of the classical theory, which uses mean values of the phonon 
coordinates. However, the adiabatic approach gives a meaningful normal 
phase and a description of quantum fluctuations. It also changes the trans- 
ition from second order to first order. It should be noted that many people 
have used this transformation before. (3~ For spin-l/2 particles there is a 
clear-cut isolation of the nonadiabatic effects. This simplifies the systematic 
analysis as compared with the usual treatments of the adiabatic 
approximation, even though the physics is n o  different. What has been 
missing, and is supplied here, is the extension to the symmetry-breaking 
region and an analysis of the pair Hamiltonian. 

The results for B >> 1 can be obtained in other ways. For example, they 
can be found easily from the Greeffs function treatment, with symmetry 
breaking, of Prelovsek (4~ and others. The adiabatic transformation has the 
advantage of making obvious the role of the parameter 7 and the expansion 
in 1/B. It should also be noted that the domain of validity of the adiabatic 
approach can be extended, as noted by Carmeli and Chandler. (s~ A 
variational calculation can be made with a 

With 7--1 and f l=B  one obtains the lowest order result even if B is 
not large. However, my main concern has been with the behavior at the 
transition line. 
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